organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

L. Mahalakshmi,^a V. Upadhyaya^b and T. N. Guru Row^a*

^aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, and ^bPhysics Department, Manipal Institute of Technology, Manipal 576 119, India

Correspondence e-mail: ssctng@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.023 wR factor = 0.062 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,4,5-Trichloroacetanilide

The title compound, $C_8H_6Cl_3NO$, also known as *N*-(2,4,5-trichlorophenyl)acetamide, is an organic non-linear optical material. It crystallizes in the monoclinic system, in the non-centrosymmetric space group *Pn*.

Comment

The title compound, (I), is found to be of interest as an organic non-linear optical material. The crystals show optical second harmonic generation with the fundamental beam ($\lambda =$ 1064 nm) of an Nd–YAG laser. The single-crystal structure elucidation in a non-centrosymmetric space group further reinforces this observation.

Fig. 1 shows the title compound. The torsion angle about the C1–N1 bond is 40.3 (3)°, which shows that the amide group deviates markedly from the plane of the phenyl ring (Table 1). The packing of molecules is stabilized by intermolecular N– $H \cdots O$ hydrogen bonds, leading to the formation of molecular chains running along the *a* axis (Fig. 2 and Table 2).

Experimental

The title compound was prepared by the direct reaction of 2,4,5trichloroaniline and acetic anhydride at room temperature for 10 min. Crystals suitable for single-crystal diffraction study were grown at ambient temperature by slow evaporation of a methanol solution. The title compound crystallizes as colourless needles.

Crystal data

C ₈ H ₆ Cl ₃ NO	$D_x = 1.691 \text{ Mg m}^{-3}$
$M_r = 238.49$	Mo $K\alpha$ radiation
Monoclinic, Pn	Cell parameters from 825
a = 3.9015 (8) Å	reflections
b = 12.658 (3) Å	$\theta = 3.9–27.7^{\circ}$
c = 9.6687 (19) Å	$\mu = 0.93 \text{ mm}^{-1}$
$\beta = 101.186 \ (5)^{\circ}$	T = 293 (2) K
$V = 468.42 (17) \text{ Å}^3$	Needle, colourless
Z = 2	$0.56 \times 0.28 \times 0.27 \text{ mm}$

 \bigcirc 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 22 July 2002 Accepted 24 July 2002

Online 31 July 2002

Figure 1

View of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Data collection

Bruker SMART CCD area-detector	1956 independent reflections
diffractometer	1903 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.014$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -5 \rightarrow 5$
$T_{\min} = 0.624, \ T_{\max} = 0.787$	$k = -16 \rightarrow 16$
3931 measured reflections	$l = -12 \rightarrow 11$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(E^2) + (0.0438P)^2]$

where $P = (F_o^2)^2$

 $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

817 Friedel pairs

Flack parameter = 0.04 (4)

Absolute structure: (Flack, 1983),

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.18 \text{ e} \text{ Å}^{-3}$

 $+2F_{c}^{2})/3$

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.062$ S = 1.051956 reflections 119 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cl1-C2	1.7277 (17)	O1-C7	1.210 (2)
Cl2-C4	1.7256 (16)	N1-C1	1.4067 (19)
Cl3-C5	1.7237 (17)	N1-C7	1.357 (2)
C1 N1 C7	124 19 (14)		101.16 (10)
CI-NI-C/	124.18 (14)	02 - 04 - 05	121.16 (13)
N1-C1-C6	121.22 (14)	Cl3-C5-C4	120.95 (13)
N1-C1-C2	120.58 (14)	Cl3-C5-C6	118.84 (13)
Cl1-C2-C3	118.11 (12)	N1-C7-C8	114.71 (15)
Cl1-C2-C1	120.05 (12)	O1-C7-N1	122.92 (16)
Cl2-C4-C3	118.77 (12)	O1-C7-C8	122.37 (16)
C7-N1-C1-C2	140.98 (18)	C7-N1-C1-C6	-40.3(3)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO1^i$ C6-H6···O1	0.86 0.93	2.19 2.46	3.022 (2) 2.865 (2)	164 107
Symmetry code: (i)	$x - \frac{1}{2} - y - z - \frac{1}{2}$			

H atoms were refined as riding, with C–H distances of 0.93 or 0.96 Å and an N–H distance of 0.86 Å.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 for Windows (Farrugia, 1997) and *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *PLATON* (Spek, 1990).

The authors thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRFA-DST program. LM thanks DST, India, for a research associateship.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.